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ABSTRACT1
Estimating origin-destination (OD) demand is indispensable for urban transport management and2
traffic control systems. While the existing estimation methods rely on data sources like house-3
hold travel surveys and traffic network detection, they incur very high costs and are still either less4
frequent or low in coverage density triggering lower observability and indeterminacy issues for5
OD estimation. With ubiquity of smartphones, Location based social networks (LSBN) data has6
emerged as a new rich data source with broad urban spatial and temporal coverage highly suitable7
for OD estimation. However, thus far, most LSBN-based estimation models only focus on static8
(day-level) OD estimation. This paper establishes a two-stage stochastic programming (TSSP)9
framework integrating the activity chains to model activity-level mobility flows using LBSN data.10
The first stage model aims to minimize the errors introduced by the inter-zone OD flows alongside11
the expected errors of the check-in patterns. The second stage model attempts to minimize the12
errors produced by the considered check-in pattern scenarios. A generalized Benders decomposi-13
tion algorithm is presented to solve the two-stage stochastic programming model. We conduct the14
experiments employing generalized least squares (GLS) estimator on the case study of Tokyo city.15
The results depict that the algorithm convergence can be guaranteed within several steps. The al-16
gorithm shows satisfactory performance in check-in pattern estimation, OD flows estimation, and17
activity share estimation. Further, the implementation of the model in practical applications is also18
specifically discussed.19

20
Keywords: OD estimation, Demand estimation, Large networks, Stochastic programming, LBSN21
data, Generalized Benders Decomposition22
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INTRODUCTION1
An accurate origin-destination (OD) matrix, as a typical representative of mobility demand pattern,2
is indispensable in urban transportation management and traffic control systems (1, 2). Integrating3
with a traffic assignment model, it can be used to reproduce the traffic flow and network state in a4
detailed manner, helping to design practical measures to improve the transport system efficiency.5

Existing OD estimation methods primarily includes three travel data sources, i.e., tradi-6
tional household surveys, traffic measurements, and positioning technology based data (3). The7
first data source type of traditional household surveys are time-consuming, labor-intensive and8
expensive, therefore are normally restrained within a limited area at low frequencies (e.g., once9
or twice a decade). Similarly, OD estimation using the second data type of traffic measurements10
also relies on dense detection infrastructure distributed over the network, requiring high cost for11
both installation and maintenance. The traffic measurement based methods also structurally suffer12
from the issue of indeterminateness in estimating realistic OD flows patterns (i.e., multiple sets of13
varying OD matrix patterns can satisfy the constraints imposed by the traffic measurements and14
optimize the system objective at the same time) due to the high dimensionality of the OD matrix15
(4–6). Therefore, methods using the third data source type have attracted much attention in re-16
cent years. The ubiquity of smartphones equipped with positioning technologies, such as GPS and17
Bluetooth, has resulted in regular real-time generation of large sets of well-distributed data that18
also provides unprecedented opportunities for the implementation and application of OD estima-19
tion methods.20

Generally, people travel for specific purposes, which enables the integration of travel pur-21
poses and activity chains into OD estimation. Location based social networks (LBSN) data has22
been used to develop such models, attributed to its broad urban spatial and temporal coverage and23
confirmed trip purposes (7). LBSN services generate a large amount of anonymous check-in data24
of venues and users, making it a natural “host” of urban mobility patterns (3, 8). More specifically,25
check-in time series of venues record the travel destination distribution in both spatial and temporal26
dimensions, while check-ins of users reflect the activity chains of individuals. It is thus probable to27
develop an activity-based OD estimator to simulate the urban mobility using the patterns extracted28
from LBSN data.29

To this end, Yang et al. (3) proposed a singly constrained gravity model to estimate the30
non-commuting OD flows using LBSN check-in data. The model was further improved by Jin31
et al. (8) who replaced the singly constrained gravity model with a doubly constrained one to re-32
duce the sampling bias of check-in data. The performance of other conventional trip distribution33
models, such as radiation model, rank-based model, and population-weighted opportunities model,34
calibrated with LBSN data have also been compared and evaluated in Kheiri et al. (9). However,35
all these models can only provide a static (day-level) solution to the OD estimation problem. Ac-36
cordingly, inspired by the promising performance of the application of the Hawkes process to37
self-reinforcing behavior modeling in Cho et al. (10), Hu and Jin (7) presented a time-of-day zonal38
arrival estimation model by integrating the Hawkes process and a LBSN check-in observation39
model into a state-space modeling framework. Such an approach can reduce the sampling bias in40
OD estimation caused by the difference between the social behaviors and the real travel patterns.41
As per Jin et al. (8), the accuracy of trip arrival estimation is significant for the performance of OD42
estimator using LBSN data.43

There is still a significant scope left to explore the usage of LBSN data and construct a44
dynamic OD estimator that can thoroughly utilize the trip purposes and activity chains informa-45
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tion. Therefore, as a step in that direction, this papers establishes a two-stage stochastic program-1
ming (TSSP) framework integrating the activity chains to model activity-level mobility flows using2
LBSN data. It is worth mentioning that, stochastic programming has been applied to optimize the3
allocation of traffic sensors considering the uncertainty in the path flow distribution (11), and the4
OD reconstruction problem based on traffic counts (12). However, to the best of our knowledge,5
this is the first effort to apply it to model the dynamic OD estimation problem based on LBSN data.6

In this study, we assume that similar check-in patterns are generated by the same OD flow7
pattern, and these check-in patterns are treated as scenarios in the stochastic programming frame-8
work. The first stage minimizes the errors introduced by the inter-zone flows (refer to OD flows9
hereafter) alongside the expected errors of the check-in patterns. The second stage is to minimize10
the errors produced by each check-in pattern scenario separately. Note that, a scenario is defined11
as a realization of the second stage problem state, i.e., the check-in patterns. Finally, the proposed12
two-stage stochastic programming model is addressed by the generalized Benders decomposition13
(GBD) algorithm. The idea is to construct a master problem and a series of subproblems (one per14
scenario) with respect to the first stage and second stage decision variables, respectively. These15
problem are then optimized alternately and iteratively until the global optimum is found (11).16

In the remainder of this paper, we first briefly introduce the LBSN check-in data. Then, the17
mathematical model of the proposed OD estimator based on LBSN data is constructed, followed18
with the solution algorithm − generalized Benders decomposition. Later on, case studies are19
elaborated and model performance is evaluated. Finally, we draw some conclusions and suggest20
future directions for research.21

LBSN CHECK-IN DATA DESCRIPTION22
This section provides a brief introduction on the characteristics of LBSN check-in data and relevant23
concepts. An LBSN check-in event is automatically recorded when a user posts with geo-location24
information or visits a venue (a point-of-interest). Each check-in is described by a user ID, a25
venue ID, and the time of the check-in. In this regard, we can treat venues as detectors of such26
events, while users are the objects or counts being detected. Overall, venues and users participate27
in the services actively as venues can interact with customers in a creative and convenient manner28
and customers can get awarded (e.g., discounts or "badges") from the social networking sites.29
Compared to the conventional household surveys, such check-in data can be collected at a very30
low cost with much higher frequency, and compared to the traffic measurements, detectors (i.e.,31
venues) of check-in events are “deployed” much denser over the urban area.32

Combining with the pre-registered location and category information of venues, the check-33
in data has become a carrier of activity-oriented urban mobility patterns and can thus be used to34
model the urban travel demand after appropriate aggregation. Normally, venue-side data and user-35
side data are distinguished in the site server (3). Venue-side data contains the check-in statistics36
with respect to the venue, while user-side data preserves the check-in history of the user. Conse-37
quently, one can aggregate the venue-side check-in data based on the categorical hierarchy adopted38
by the site to model the activity-based mobility flows. Likewise, the activity chains of individuals39
can be extracted from user-side data. Inspired by this basic idea, in next section we develop a40
mathematical model for OD estimation using LBSN check-in data which integrates the aggregated41
check-in patterns of venue-side data and the activity chains extracted from user-side data.42
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METHODOLOGIES1
Given that the OD patterns do not change dramatically within a short period without any disruptive2
events, we do a plausible assumption that similar check-in patterns at a specific time interval in3
different days during the reference period are generated by the same OD pattern. Similarly, it is also4
reasonable to say that OD flows generate when people travel for various activities across different5
regions within the network. In other words, OD flows are aggregated results of activity flows.6
Based on the said basic assumption and conceptual analysis, we developed an activity-oriented7
OD estimator in this section, leveraging the two-stage stochastic programming framework.8

In particular, the OD estimator is built upon the graph model shown in Figure 1. For conve-9
nience, we define an activity node as an aggregating representative for a specific type of activities,10
e.g., “Food”. An activity flow is then the movements of people between two types of activities. For11
each traffic analysis zone (TAZ), we define a virtual source and a virtual sink to: (i) “memorize”12
the sum of in- and out-flows; (ii) counteract the noise in the check-in data collection; (iii) bridge the13
first-stage and the second-stage model decisions. Noteworthy, for a specific TAZ both the source14
node and the sink node are connecting to all activity nodes in the TAZ. The proposed approach is15
to optimize the OD pattern in the first-stage, fulfilling the specific constraints on OD flows and the16
constraints imposed by the expected cost from the second-stage problem. In the second stage, the17
check-in pattern will be optimized conditional on a specific problem state and OD pattern. Clearly,18
the optimal OD pattern and check-in pattern are interdependent.19

FIGURE 1: Graphical illustration of the model.

Two-Stage Stochastic Programming Model20
The check-in patterns are the scenarios considered in the second stage, incurring by a common21
OD pattern. We formulate the generic two-stage stochastic programming model for OD estimation22
using LBSN check-in data as follows:23

min
x

f1

(
x,x(p)

)
+κ fc (Φ(x),Φc(c))+ωEξ [Q(x,ξ )] (1)

s.t. εbx(p)
i j ⩽ xi j ⩽ εbx(p)

i j ∀i, j ∈ Z (2)
24

where x is the decision variable of the first-stage problem, i.e., the vector of OD flows, x(p) is25
the given prior OD flows. f1(·) is the function measuring the difference between the estimated26
posterior OD flows and the prior OD flows. Similar to traffic measurement based OD estimators,27
the idea of including f1(·) in the objective function is to help restrict the search space of the28
posterior OD flows. Φ(x) is the vector of out-flows of zones which is obtained by aggregating29
the estimated OD flows correspondingly, Φc(c) is the given out-flows estimated with the observed30
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check-in statistics c. Note that fc(·) measures the distance between the modeled and the measured1
out-flows. The addition of fc(·) is inspired by the linear relationship observed from ten-month2
empirical LBSN check-in dataset. Figure 2 compares the observed out-flows and the out-flows3
estimated by a simple linear regression model based on the number of check-ins, i.e., Φc(c) = θ̂ T c,4
where θ̂ = (CTC)−1CT Φ0, C is the matrix of the number of check-ins aggregated by TAZs, and5
Φ0 is the vector of observed out-flows. This out-flows estimator is an input to the proposed OD6
estimator and will be adopted in the following experiments.7
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FIGURE 2: Linear relationship between out-flows and the number of check-ins.

While f1(·) force the posterior OD flows to follow a similar OD pattern as the prior, fc(·)8
adjust the OD demand level based on check-in observations. κ is a weight factor that quantifies the9
relative reliability of the prior OD estimate and the prior out-flow estimate. Z is the set of TAZs10
within the study area, and xi j is the OD flow from TAZ i to j. Equation (2) represents the bound11
constraints on the OD flows, and bounds are defined as a multiple of the prior OD estimate. εb12
(< 1) and εb(> 1) are threshold parameters.13

Two-stage stochastic programming framework provides an opportunity for further restrict-14
ing the search space of the OD flows. This is achieved by introducing a batch of check-in pattern15
scenarios of the second-stage problem state, as expressed by the third term of Equation (1). Eξ16
calculates the expectation with respect to a random vector ξ , defined on the probability space17
(Ω,F ,P), with Ω being the sample space, F being the event space, and P being a probability18
distribution defined on F . ξ is a random variable to describe the problem state at the second stage.19
Eξ [Q(x,ξ )] is also called the recourse function. ω is a weight factor that quantifies the trade-off20
between the optimization of OD flow pattern and check-in patterns. Q(x,ξ ) is the optimal value21
of the second stage problem given by22
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Q(x,ξ ) = min
y ∑

z∈Z
f2
(
∆z(yz), ∆̂z(ξ )

)
(3)

s.t. ∑
u∈{Vz−v}

yvu,z −

(
∑

u∈{Vz−v}
yuv,z +qτ−1

v,z (ξ )

)
⩽ 0 ∀v ∈ Vz,∀z ∈ Z (4)

(1− εa)ρvuqτ−1
v,z (ξ )⩽ yvu,z ⩽ (1+ εa)ρvuqτ−1

v,z (ξ ) ∀v,u ∈ Vz,∀z ∈ Z (5)

yvu,z ⩾ 0 ∀v,u ∈ Vz,∀z ∈ Z (6)

(1− εs) ∑
m∈{Z−z}

xmz ⩽ ∑
v∈Vz

ysv,z ⩽ (1+ εs) ∑
m∈{Z−z}

xmz ∀z ∈ Z (7)

(1− ε t) ∑
m∈{Z−z}

xzm ⩽ ∑
v∈Vz

yvt,z ⩽ (1+ ε t) ∑
m∈{Z−z}

xzm ∀z ∈ Z (8)
1

where ∆̂z(ξ ) = qτ−1
z (ξ )−qτ

z (ξ ) is the “check-in pattern” of TAZ z in scenario ξ with qτ
z being2

the vector of the number of check-ins at different activity nodes in time interval τ , ∆z(yz) is the3
estimated check-in pattern derived from the optimized activity flows yz. f2(·) is a goodness-of-fit4
function measuring the distance between the observed and estimated check-in patterns. Vz is the5
set of activity nodes in TAZ z. In practice, only the main venue categories in the TAZ will be6
selected for the sake of: (i) reducing the noise in the statistics caused by insufficient venues of a7
specific category; (ii) distinguishing different TAZs with respect to the land-use functionality and8
characteristics.9

Equation (4) (denominated as inventory constraints) expresses that for a specific activity10
node v the sum of leaving flows cannot be greater than the sum of the coming flows and the number11
of check-ins recorded at the previous interval. Equation (5) (denominated as activity share con-12
straints) incorporates the activity chain information extracted from user-side data into the model,13
which is used to restrict the search space of activity flows and prevent the optimization from over-14
fitting issue to some extent. ρvu is the activity share of u in the flow out from v, which can be15
estimated from the historical check-in data. Note, the activity share can be aggregated at either the16
network level or TAZ level. All activity flows should be non-negative as expressed by Equation (6).17

Moreover, recall that we define a source node and a sink node for each zone in the graph18
model. Thus, it is natural to have the in- and out-flow balance constraints on the source and sink19
nodes, which connect the decision variables of the first- and second-stage problems. However, due20
to the randomness and incompleteness of the activity information, we allow a subtle deviation in21
both constraints. The in-flow balance constraints are then given by Equation (7), representing that22
for a specific TAZ the sum of activity flows from the source node should not deviate too much23
from the sum of inter-zone flows to that TAZ. Similarly, the out-flow balance constraints are given24
by Equation (8), indicating that for a specific TAZ the sum of activity flows to the sink node should25
not deviate significantly from the sum of inter-zone flows from that TAZ.26

εa, εa, εs, εs, ε t and ε t are predefined threshold parameters in the range (0,1). We note that27
the optimal activity flows y∗ depends on the first-stage OD pattern x and the second-stage problem28
state ξ .29

By comparison, the proposed LBSN data based OD estimator resembles the generic traf-30
fic measurement based OD estimator to a certain extent: (i) the proposed model also relies on31
a prior OD flow estimate; (ii) fc(Φ(x),Φc) in the objective function of the first-stage problem32
(Equation (1)) and the activity share constraints in Equation (5) play a similar role as the traffic33
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assignment method; (iii) both models need to handle the stochasticity of the observed data. The1
difference between the two method lies in that LBSN data are collected when the travel is finished2
but traffic measurements are collected during the travel. In other words, LBSN contains the end-3
to-end information, while traffic measurements reflects the situation between ends. As a result, the4
application of LBSN data based OD estimator usually demands no network structure, but needs5
the information of activity preference of travelers. More importantly, different from most traffic6
measurement based OD estimators in the existing literature, the proposed model can be used for7
dynamic OD estimation by only using the LBSN data for estimated check-in patterns without the8
need of otherwise running computationally expensive dynamic traffic simulation to generate sim-9
ulated traffic measurements. This puts the proposed methodology on a significant computational10
advantage against most dynamic OD estimation approaches.11

Sampling and Sample Average Approximation12
Apparently, the proposed model is very complicated and non-convex as the expectation Eξ is13
usually an integral of a complex function. Accordingly, in practice, we often need to assume ξ14
has a finite number of possible realizations with a known probability distribution, such that we can15
estimate Eξ by:16

Eξ [Q(x,ξ )] =
N

∑
n

pn f2
(
∆z(yz), ∆̂z(ξn)

)
(9)

17
where N is the total number of realizations. Applying some sampling techniques and sample18
average approximation (SAA) method, the expectation can then be approximated by:19

Eξ [Q(x,ξ )]≈ 1
Ns

Ns

∑
n

f2
(
∆z(yz), ∆̂z(ξn)

)
(10)

20
where Ns is the total number of scenario samples selected. In this paper, we apply the k-nearest21
neighbors algorithm (k-NN) to search for similar check-in patterns in the historical data to compose22
the set of check-in pattern scenarios of the OD pattern, in which each activity node pair is regarded23
as one dimension of the observation.24

Generalized Benders Decomposition Algorithm25
The generalized benders decomposition algorithm (GBD) was first proposed in Geoffrion (13) for26
addressing the mathematical programming problems with complicating variables (i.e., variables27
that if fixed to given values render a simple or decomposable problem). Obviously, in two-stage28
stochastic programming, the first-stage decision variables are the complicating variables of the29
problem. The idea behind GBD is of decomposing the original problem into a master problem30
and a series of subproblems (one per scenario). In the master problem, the first-stage decisions31
(i.e., OD flows, x) are optimized. In the subproblems, the second-stage decisions (i.e., activity32
flows, y) are optimized. They are solved iteratively until convergence. At a specific iteration k,33
the subproblems are solved first separately resulting in the optimum yk(ξ ) given xk−1 and scenario34
ξ . An optimality cut (or feasibility cut) is generated based on the dual solutions of subproblems35
(or feasibility problem), which is added to the master problem as a new constraint. Given all cut36
constraints created through a pass-back mechanism from subproblems in previous iterations, the37
master problem is solved with respect to x resulting in xk. Note, these cuts gradually shrink the38
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feasible space of the complicating variable.1
To describe the algorithm, we sequentially provide the formulations of the subproblem2

(SP), the feasibility problem (FP), and the master problem (MP). At the k-th iteration, for a given3
scenario ξn and xk−1, the SP is formulated as follows:4

min
y ∑

z∈Z
f2
(
∆z(yz), ∆̂z(ξn)

)
(11)

s.t. Constraints (4)-(8) (12)

x = xk−1 : λ
k
n (13)

5
The solution of the SP provides values for the activity flows yk in different scenarios, as well as6
the corresponding optimal Lagrange multipliers vector associated with Constraints (13), i.e., the7
optimal dual variables vector, λ k. Note, we can have Ns SPs solved in parallel. If the SP is feasible,8
the Lagrangian function can be written as:9

Lo(x,yk(ξn),λ
k
n ) = ∑

z∈Z
f2

(
∆z(yk

z(ξn)), ∆̂z(ξn)
)
+(λ k

n )
T (x−xk−1) (14)

10
However, if the SP is infeasible, the following FP will be solved.11

min
y,η

η (15)

s.t. Constraints (4)-(8) (16)
η ⩾ 0 (17)

x−xk−1 ⩽ η : µ
k
n (18)

12
Similarly, we can get the Lagrangian multiplier vector µk

n for Constraints (18). The Lagrangian13
function of the FP is given by:14

L f (x,µk
n) = (µk

n)
T (x−xk−1 −η) (19)

15
Then, the MP is formulated as follows:16

min
x,α

f1

(
x,x(p)

)
+κ fc (Φ(x),Φc(c))+α (20)

s.t. εbx(p)
i j ⩽ xi j ⩽ εbx(p)

i j ∀i, j ∈ Z (21)

ω/Ns

Ns

∑
n=1

Lo(x,yt(ξn),λ
t
n)⩽ α ∀t ∈ Io (22)

L f (x,µ t
l )⩽ 0 ∀l ∈ St

f ,∀t ∈ I f (23)
17

where Io is the set of indices of the iterations at which all SPs are feasible, I f is the set of indices18
of the iterations at which at least one of the SPs is infeasible, and St

f is the set of scenarios whose19
associated SPs are infeasible at iteration t. Constraints (22) are denominated as optimality cuts,20
while Constraints (23) are feasibility cuts. From MP, we can get the values of the first-stage21
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decision variables xk.1
If the original objective function is convex on the complicating variable, GBD can guar-2

antee the strong optimality condition, i.e., the optimal solution from the decomposed problems is3
equivalent to the original problem. For convenience, further details on the procedure of the GBD4
algorithm are presented in Algorithm 1.

Algorithm 1 Generalized Benders decomposition algorithm for OD estimation
1: Initialize the OD flows x0.
2: Initialize the iteration index k = 1, the complicating variables xk = x0, error tolerance ε , the

maximum number of iterations M.
3: Set the lower bound of the objective function zk = 0, and the upper bound zk = ∞.
4: while |zk − zk|/|zk|⩾ ε and k < M do
5: Set k := k+1.
6: Solve the subproblems by fixing x as xk−1 .
7: if all subproblems are feasible then
8: Obtain solution yk and the dual variables of those constraints that fix the complicating

variables to given values λ k.
9: Calculate z = f1(xk−1,x(p))+κ fc(Φ(xk−1),Φc(c))+ω/Ns ∑

Ns
n ∑z f2

(
∆z(yz), ∆̂z(ξn)

)
.

10: Update the upper bound zk = min{zk−1,z}.
11: Set Io := Io ∪{k}.
12: else
13: Solve the feasibility problems associated with the infeasible subproblems.
14: Obtain solution yk, dual variable vector µk and the set of infeasible subproblems Sk

f .
15: Set I f := I f ∪{k}.
16: end if
17: Add the new optimality cut (or feasibility cuts) to the master problem.
18: Solve the master problem to get xk and αk.
19: Update the lower bound z(k) = f1(xk,x(p))+κ fc(Φ(xk),Φc(c))+αk.
20: end while

5

EXPERIMENTAL DESIGN6
In this section, we verify the proposed OD estimator using the Foursquare check-in data. Foursquare7
was launched in 2009 and has provided the leading LBSN service for more than a decade. As of8
2016, it has more than 60 million registered users, with over 50 million monthly active. At the9
same time, more than 95 million venues from over 190 countries or regions are registered on the10
site. Their real-world images and consumer reviews are being updated constantly. It indicates that11
the Foursquare data has a broad spatial coverage and therefore can somewhat capture the human12
behavior in urban areas.13

Case study setup14
The Foursquare check-in data (14) of Tokyo city, Japan, from April 2012 to February 2013 are15
used in the following experiments. Figure 3a shows the map of the study area and the delineation16
of TAZs. It is clear that the study area (1,302 km2) is divided into 17 TAZs. Figure 3b exhibits17
a heatmap of 10,000 check-in records randomly sampled from the entire dataset, which contains18
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57,3703 records. The heatmap has a clear center and the color intensity gradually fades from the1
center outward. We note that TAZs are devised based on the density of check-ins for the sake of2
statistical significance, i.e., denser area has more TAZs.

(a) TAZs (b) Heatmap of check-ins

FIGURE 3: Study area: City of Tokyo.
3

Due to the lack of venue-side data, we aggregate user-side data hourly for each parent venue4
category1, each TAZ, and each day to reconstruct the venue-side dataset. Categories with fewer5
than five check-ins are not further defined as an activity node of the TAZ. This can help identify the6
functionality of TAZs in land use and the generator of their attractiveness over time. For instance,7
the TAZ that has a huge number of “College & University” check-ins but a negligible quantity8
of “Professional & Other Places” check-ins is more likely an area including higher-educational9
institutions. Futhermore, we apply the moving average (seven days) technique to cancel the ran-10
domness of check-in behavior. In terms of the user-side dataset, for a specific time interval, we first11
extract the activity chain of each user. An activity share matrix can then be derived by counting12
the number of transfers between every two activities followed with normalization.13

Algorithm setup14
In the following experiments, we set the threshold parameters, {εs,εs,ε t ,ε t ,εa,εa}, as 0.2. The15
bound constraint parameters, {εb,εb}, are 0.2 and 5, respectively. We set the weight factors, κ and16
ω , as 1. The number of second stage realizations Ns is set to 5. Regarding the GBD algorithm,17
the convergence threshold is ε = 0.05. Without loss of generality, we apply the generalized linear18
squares (GLS) estimator in the goodness-of-fit functions, f1(·), fc(·) and f2(·), resulting in a convex19
optimization problem with complicating variables. In this case, the GBD algorithm can guarantee20
a global optimal solution as the original problem. Mathematically, f1(·), fc(·) and f2(·) are given21
as follows:22

f1

(
x,x(p)

)
=
(

x−x(p)
)T

Λ1

(
x−x(p)

)
(24)

1Foursquare leverages its own proprietary taxonomy of more than 1000 categories. According to the hierarchical
taxonomy of categories (version 2012), ten parent categories are defined, including: Arts & Entertainment, College
& University, Event, Food, Nightlife Spot, Outdoors & Recreation, Professional & Other Places, Residence, Shops &
Service, Travel & Transport.
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fc (Φ(x),Φc(c)) = (Φ(x)−Φc(c))T
Λc (Φ(x)−Φc(c)) (25)

f2
(
∆z(yz), ∆̂z(ξn)

)
=
(
∆z(yz)− ∆̂z(ξn)

)T
Λ2
(
∆z(yz)− ∆̂z(ξn)

)
(26)

1
where Λ1,Λc and Λ2 are the dispersion matrix of the prior OD estimate, of the out-flows distribu-2
tion, and of the check-in pattern, respectively. For simplicity, we set Λ1 = Λc = Λ2 = diag(1).3

Demand scenario setup4
To conduct the experiments, we chose the morning peak (7 am - 10 am) of February 1st, 2013,5
divided in three estimation time intervals each for one hour. The entire check-in dataset is used for6
estimating the relationship between the number of check-ins and the out-flows, i.e., θ̂ , as afore-7
mentioned. Further to generate the demand estimation scenarios, Antoniou et al. (5) points out that8
the quality of the prior OD estimate, in terms of both demand level and patterns, is a key element9
affecting the performance of the OD estimator. Following the suggestions therein, we perturb the10
true OD flows to derive the historical OD flow estimates to be provided as inputs for the OD es-11
timator. Due to space limitations, here we only test the performance of the proposed approach in12
low-demand scenarios, i.e., the prior OD estimate is out-of-date and is lower than the true demand13
level. More specifically, we create the prior OD estimate using the following equation:14

x(p) = (0.7+0.3δ )x δ ∼ N (0,1/3) (27)

RESULTS15
In this section, we first analyze the convergence performance of the GBD algorithm. Then, the16
fit of the estimated OD flows, to the true OD demand, to the check-in pattern, and to the activity17
share is presented. Finally, we show that the LBSN OD matrix can be easily scaled up to approxi-18
mate the network OD matrix, illustrating the potential of the proposed OD estimator for practical19
applications.20

Algorithm Convergence Analysis21
Figure 4 depicts the convergence results for estimating the OD matrices of the three experiment22
intervals. Since the initial upper bound is infinity, it is not visible in the figure. Recalled that the23
upper bound is updated by solving the subproblems, while the lower bound is updated by solving24
the relaxed master problem. As expected, the algorithm converges within only a few iterations in25
all three experiments, due to the convexity of the problem (GLS estimator). At each iteration, the26
algorithm needs to solve the relaxed master problem once, and all the Ns subproblems in parallel.27
Note, the relaxed master problem can be solved efficiently (in seconds) as it has limited number28
of constraints and all constraints share the same format. We also found that subproblems are29
always feasible if x0 is feasible, which means all Benders type cuts are optimality cuts, and thus30
no feasibility problems needed to solve and no feasibility cuts are added to the master problem.31
In consequence, the three experiments are solved in rather cheap computational efforts, indicating32
that the proposed modeling framework has the potential for estimating the dynamic OD matrices33
for large scale networks.34
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FIGURE 4: Convergence performance of the GBD algorithm.

Estimation Quality Evaluation1
Figure 5 illustrates the quality of estimation with respect to the check-in patterns by comparing the2
empirical and estimated check-in pattern using 45◦ plots. Recall that check-in pattern is defined3
as the map of the difference of check-in counts between successive time stamps. We can see that4
all points are aligned closer to the “y = x” line at interval 7 am - 8 am, confirming the capability5
of the model in recreating the check-in pattern. However, in intervals 8 am - 9 am and 9 am - 106
am, though most points are also located near the 45◦ line, some deviate relatively further from the7
line. It is caused by the usage of k-NN in scenario selection as described in the previous section.8
k-NN would lead to biased results under the situation of limited candidate set. As a result, OD9
estimates that are promising to some check-in scenarios accidentally incur a biased estimate to10
some activity nodes in the others. The problem could be eliminated by incorporating the model11
with better sampling methods. Moreover, we can also see that some venues observe large negative12
check-in difference in the interval 7 am - 8 am. These venues may represent the residence places13
given that people are more likely to leave their home to work at this time. In all three intervals, we14
can find that most points are located in the range [−20,20], which represent the regular movements15
between different activities.16

Similarly, Figure 6 visualizes the quality of the estimated OD flows by comparing it with17
the target OD flows using 45◦ plots. Overall, the model reaches to an acceptable estimate with18
a slight underestimation in the high demand OD pairs. We note that the prior OD estimate is19
also underestimated as 70% of the target values in average. Our model can somehow improve the20
situation attributed to the inclusion of fc(·) and a batch of check-in pattern scenarios.21

Further, Figure 7 compares the theoretic activity shares and the estimated activity shares.22
The difference has been restricted by the activity share constraints expressed in Equation (5). Due23
to the large number of points, we add the heatmap effect in the figure to represent the density of24
points. Brighter colors mean greater density, vice versa. Overall, there are more points in the range25
of smaller values. Since the constraints are defined based on percentage values, it is plausible26
to see the points with larger values are more scattered. In addition, we also note that more active27
movements (larger activity shares present) can be observed in 8 am - 9 am and 9 am - 10 am. Hence,28
together with the label of these activity flows, Figure 7 can provide useful auxiliary information for29
dynamic traffic management, and help venues design working schedules and “production” plans.30
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FIGURE 5: Comparison of true and estimated check-in patterns.
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FIGURE 6: Comparison of target and estimated OD flows.
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FIGURE 7: Comparison of true and estimated activity share.
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Scaling Towards Network OD Flows1
The OD flows compared in the previous sections only represent a partial set of the overall network2
OD flows that are observed in the LBSN check-in dataset (refer to LBSN OD matrix/flows here-3
after). Whilst, we usually need the actual network OD matrix in real practical applications instead.4
It is a critical input to the traffic simulation models for evaluating traffic management and policy5
measures (5). However, we argue that due to the random nature of check-in behaviors the LBSN6
OD matrix follows the same structural pattern as the network OD matrix, except for the deviation7
in the magnitude of demand level. Therefore, Figure 8 compares the network OD flows and the8
magnified LBSN OD flows using a similar method as in Figure 2. More specifically, the “true”9
network OD flows here are the average of TomTom OD flows of all Wednesdays in January 2021.10
The estimated network OD flows are obtained by scaling up the observed LBSN OD flows using a11
common scaling matrix for morning time and another matrix for afternoon time. Despite a rough12
estimation, the estimated ODs has a close pattern to the true ODs. It is reasonable to say that the13
Scatteredness of points is the joint result of the combination of the long distance in time (that the14
two datasets are collected) and the bias in data collection methods.15

TomTom is a Dutch corporation launched in 1991 that specializes in the production of car16
navigation systems of all types. Many enterprises use TomTom’s positioning technologies such as17
Microsoft and Uber, due to their high precision. The TomTom data are collected from the probe18
vehicles which are equipped with TomTom’s positioning devices. Given the high penetration rate19
of TomTom positioning devices, we believe that TomTom data can capture the real traffic state to20
a large extent. Therefore, Figure 8 confirms that the LBSN OD flows estimated by the proposed21
model can approximate the real network OD flows after appropriate scaling. Theoretically, the22
scaling matrix can be either used after the LBSN OD estimation or directly integrated into the23
estimation framework. Also note that, exploration of more suitable scaling method which can24
incorporate demand information such as trip length frequency distributions to improve the network25
OD estimation are part of our future work.26
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FIGURE 8: Comparison of true and estimated network OD flows.
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CONCLUSION1
Origin-destination (OD) estimation methods have long relied on the two traditional data sources of2
household travel surveys and traffic network detection. On the one hand, travel surveys are time-3
consuming and labor-intensive, restraining their coverage and frequencies, while on the other, the4
traffic detection infrastructure is expensive to install and maintain, restraining its density and trig-5
gering indeterminateness issues for OD estimation methods. Therefore, OD estimation methods6
that utilize inexpensive and widespread data sources7

Considering the stochastic nature of human behaviors and transportation systems, we pro-8
pose a dynamic OD estimator by utilizing the scenario-based two-stage stochastic programming9
framework, which integrates the activity chains extracted from LBSN check-in data to model10
activity-level mobility flows. Given that OD flows are aggregated results of activity flows, the11
OD matrix can be derived from these activity flows. Within the framework, the first stage model12
aims to minimize the errors introduced by the inter-zone OD flows alongside the expected errors13
of the check-in patterns. At the same time, the second stage model attempts to minimize the errors14
produced by the considered check-in pattern scenarios. To solve the two-stage stochastic program-15
ming model, a generalized Benders decomposition is presented, which seeks the optimal solution16
by solving a relaxed master problem and a series of subproblems iteratively.17

To evaluate the approach, we employ the case study of Tokyo city and use the generalized18
least squares (GLS) estimator to measure the goodness of fit of both check-in and OD patterns. The19
experiment results show that the convergence of the algorithm can be guaranteed within several20
steps. Note, since our model is simulation free, the computational efficiency can be significantly21
improved. More Importantly, the model leads to a good fit for check-in patterns, OD flows, and22
activity share distributions. Furthermore, we also present the method to scale up the LBSN OD23
matrix to approximate the real network OD matrix, which can inspire the implementation of the24
proposed model in practical applications.25

Future directions for research would be to integrate appropriate sampling methods (e.g.,26
importance sampling) into the proposed estimation framework for generating significant scenarios27
instead of simply applying k-NN for scenario selection. On the other hand, embedding a suitable28
scaling method into the model will also be useful.29
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